

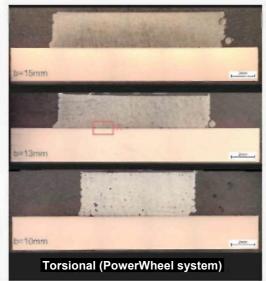


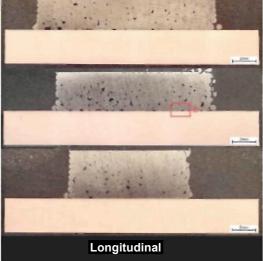
## Ultrasonic welding of aluminium conductors to copper terminals with longitudinal and torsional sonotrode movement

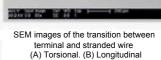


Torsional welds (PowerWheel system)

## Motivation


The ultrasonic welding of metal uses welding procedures in which an adhesive bond is formed by moving the parts longitudinally or torsionally relative to one another in a frequency range of 20 kHz. The PowerWheel procedure is a new variation of this process. In the PowerWheel procedure, rather than just moving torsionally, the sonotrode describes the shape of an arc segment. The resulting **amplitude maximisation** in the centre of the sonotrode improves the penetration in the joining zone, which makes it possible to produce **narrower welds**, **thus saving space**. The investigations described here were carried out on a PowerWheel system produced by TELSONIC.


## **Experimental procedure:**

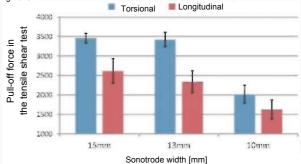

» 100 welding attempts per sonotrode geometry with parameter sets adjusted for specific tools and systems












Comparison of compacting of stranded wire in the centre of the joining zone

## Results:

The following tendencies can be deduced from the experiment for torsional ultrasonic welding using the PowerWheel procedure:

- » The values achieved in the tensile shear test improve by approx. 30-40% with the same amount of force in the tensile peel test.
- » There is a significant improvement in the compacting of the stranded wire in the node.



Comparison of the max. pull-off forces in the tensile shear test (n=50; v=50mm/min)

Faculty of Mechanical Engineering
Specialist area: Production Technology
Univ.-Prof. Dr.-Ing. habil. Jean Pierre Bergmann

Secretary: Ms. Martina Klein
Phone: +49 3677 69-2980
info.fertigungstechnik@tu-ilmenau.de
www.tu-ilmenau.de/fertigungstechnik

